如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.
(1)当∠CBD=15°时,求点C′的坐标.
(2)当图1中的直线l经过点A,且k=﹣时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.
(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.
解(1):∵△CBD≌△C′BD,
∴∠CBD=∠C′BD=15°,C′B=CB=2,
∴∠CBC′=30°,
如图1,作C′H⊥BC于H,则C′H=1,HB=,
∴CH=2﹣,
∴点C′的坐标为:(2﹣,1);
(2)如图2,
∵A(2,0),k=﹣,
∴代入直线AF的解析式为:y=﹣x+b,
∴b=,
则直线AF的解析式为:y=﹣x+
,
∴∠OAF=30°,∠BAF=60°,
∵在点D由C到O的运动过程中,BC′扫过的图形是扇形,
∴当D与O重合时,点C′与A重合,
且BC′扫过的图形与△OAF重合部分是弓形,
当C′在直线y=﹣x+
上时,BC′=BC=AB,
∴△ABC′是等边三角形,这时∠ABC′=60°,
∴重叠部分的面积是:﹣
×22=
π﹣
;
(3)如图3,设OO′与DE交于点M,则O′M=OM,OO′⊥DE,
若△DO′E与△COO′相似,则△COO′必是Rt△,
在点D由C到O的运动过程中,△COO′中显然只能∠CO′O=90°,
∴CO′∥DE,
∴CD=OD=1,
∴b=1,
连接BE,由轴对称性可知C′D=CD,BC′=BC=BA,
∠BC′E=∠BCD=∠BAE=90°,
在Rt△BAE和Rt△BC′E中
∵,
∴Rt△BAE≌Rt△BC′E(HL),
∴AE=C′E,
∴DE=DC′+C′E=DC+AE,
设OE=x,则AE=2﹣x,
∴DE=DC+AE=3﹣x,
由勾股定理得:x2+1=(3﹣x)2,
解得:x=,
∵D(0,1),E(,0),
∴k+1=0,
解得:k=﹣,
∴存在点D,使△DO′E与△COO′相似,这时k=﹣,b=1.
正确解答该题的关键在于,善用辅助线,数形结合,利用图中的特殊图形及其关系解题.